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Abstract— In this paper, the problem of aircraft conflict
prediction is formulated as a reachability analysis problem
for a stochastic hybrid system. A switching diffusion model
is introduced to predict the future positions of an aircraft
following a given flight plan. The weak approximation of
the switching diffusion through a Markov chain allows us to
develope a numerical algorithm for computing an estimate of
the probability that the aircraft enters an unsafe region of
the airspace or come too close to another aircraft. Simulation
results are reported to show the efficacy of the approach.

I. INTRODUCTION

The rapidly increasing demands for air travel in recent
years has been a great challenge to the current Air Traffic
Management (ATM) systems. The primary tasks of ATM
systems are to maintain smooth air traffic flows and to ensure
the safety of air travel by avoiding the occurrence of aircraft
conflicts, namely, aircraft coming within a minimal allowed
separation or aircraft entering a forbidden zone. It is thus
of central importance to develop highly automated tools and
methodologies for the ATM systems to predict future aircraft
conflict, both for the purpose of advance alerting and for
conflict resolution.

The development of conflict prediction methods needs to
consider several characteristics of aircraft dynamics. First,
specified by the air traffic controller by a sequence of timed
way-points, the nominal path of an aircraft is typically a
piecewise linear one. Second, aircraft motions are subject to
various random perturbations such as wind, air turbulence,
etc., and thus may deviate from the nominal path. This
cross-track deviation may be corrected by the onboard Flight
Management System (FMS). In addition, aircraft dynamics
may exhibit several distinct modes, for example, keeping a
constant heading, turning, ascending, descending, and may
switch modes at proper times when following the nominal
paths. To accommodate these characteristics, we adopt the
modeling framework of stochastic hybrid systems, [1], [2].

Generally speaking, hybrid systems are dynamical systems
with both continuous and discrete dynamics. In particular,
stochastic hybrid systems are hybrid systems with continuous
dynamics governed by stochastic differential equations and
with random discrete mode transitions governed by Markov
chains. The latter is an ideal choice for modeling aircraft
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dynamics (see, e.g., [3], [4], [5]) due to the random per-
turbations and the mode-switching behavior exhibited in the
aircraft motions when reaching way-points. In this paper,
we focus on a class of stochastic hybrid systems called
switching diffusions, and use it to model a simplified version
of the aircraft dynamics proposed in [4]. The aircraft conflict
prediction problem is formualted as a reachability analysis
problem for the underlying stochastic hybrid system, namely,
estimating the probability that the system state enters a
certain subset of the state space called the unsafe set.

Various previous works exist in studying aspects of the
reachability problem of stochastic hybrid systems. In [6],
[7], theoretical issues regarding the measurability of the
reachability events are addressed. In [7] and [8], upper
bounds on the probability of reachability events are derived
based on the theory of Dirichlet forms associated with a
right-Markov process and on certain functions of the state of
the system known as barrier certificates, respectively. In [9],
stochastic reachability is addressed in the discrete time case
by dynamic programming.

In this paper, we develop a numerical algorithm to com-
pute an asymptotically convergent estimate of the probability
that an aircraft conflict occurs. This algorithm is a further
development of the methodology for reachability compu-
tation of stochastic hybrid systems first introduced by the
same authors in [10]. Here, the method is extended and
demonstrated on the ATM example where mode switchings
occur at rates dependent on the continuous state. In the
proposed algorithm, the solution to the switching diffusion
modeling the aircraft motion is approximated by a Markov
chain, and the probability of conflict rather than single
conflict zones are propagated backward in time using the
transition probabilities of the Markov chain.

This paper is organized as follows. A switching diffusion
modeling the aircraft dynamics is introduced in Section II,
and an approximation scheme is proposed in Section III for
its reachability computation. The results obtained by apply-
ing this scheme to an aircraft conflict prediction problem are
shown in Section IV. Finally, some concluding remarks are
given in Section V.

II. A SWITCHING DIFFUSION MODEL TO PREDICT THE
AIRCRAFT POSITION

Consider an aircraft flying at some constant altitude in
some region of the airspace during the time horizon T =
[0, tf ]. The aircraft position can be described through a
two-dimensional state vector x ∈ R2 of coordinates with
respect to some global reference frame (0, x1, x2) in the



horizontal plane. The aircraft is assigned some flight plan
to follow that consists of an ordered sequence of way-
points {Oi, i = 1, 2, . . . ,M + 1}: Oi = (x1i, x2i) ∈ R2,
i = 1, 2, . . . , M + 1. Ideally, the aircraft should fly at some
constant speed along the reference path composed of the
concatenation of the ordered sequence {Ii, i = 1, 2, . . . ,M}
of line segments Ii with starting point Oi and ending point
Oi+1, i = 1, 2, . . . , M . Deviations from the reference path
may be caused by the wind affecting the aircraft position and
by limitations in the aircraft dynamics in performing sharp
turns, resulting in cross-track error. The onboard 3D FMS
tries to reduce the cross-track error by issuing corrective
actions based on the aircraft’s current geometric deviation
from the nominal path (without taking into account timing
specifications, however). Thus, the state of the aircraft at any
time instant t is given by a continuous component x(t) ∈ R2

representing its position, and a discrete component q(t) ∈
Q := {1, 2, . . . ,M} depending on which line segment the
aircraft is currently tracking.

The aircraft motion is affected by different sources of
uncertainty, the main one being the wind. We assume that
the wind disturbance acts additively on the aircraft velocity
through some nominal contribution f : R2 → R2 that
depends on the aircraft position, and some stochastic contri-
bution represented by a two-dimensional standard Brownian
motion w(t).

Under the assumption that the aircraft air speed is constant
and equal to v ∈ R+, the aircraft position x ∈ R2 during the
time horizon T is governed by

x(t) = v

[
cos(θ(t))
sin(θ(t))

]
dt + f(x(t))dt + σdw(t), (1)

where θ(t) is the heading angle at time t ∈ T .
In our model, the corrective actions of the 3D FMS are

modeled by setting the heading angle θ as an appropriate
function of x at any given time t ∈ T . For each segment
Ii of the reference path {Ii, i ∈ Q}, we define as reference
heading the angle

Ψi = arg(x1i+1 − x1i + j(x2i+1 − x2i))

that segment Ii makes with the positive x1 axis of the
reference coordinate frame (see Figure 1).

Suppose that the aircraft is tracking the line segment Ii,
for some i ∈ Q, and is currently at a position x not on Ii.
For the aircraft to get on the reference segment Ii as quickly
as possible, it should assume a heading, called correction
heading, that is orthogonal to and points towards Ii:

Ψc(x, i) = Ψi − sgn(d(x, i))
π

2
.

Here, sgn : R→ {−1, 0, +1} denotes the sign function with
sgn(0) = 0, and d : R2 × Q → R denotes the cross-track
error function

d((x1, x2), i) = [− sin(Ψi) cos(Ψi)]
[
x1 − x1i

x2 − x2i

]
.

On the other hand, the aircraft should also head towards its
next destination way-point Oi+1. In order to compromise

Fig. 1. Reference frame for the “fly-by” turning method.

between these two objectives of reducing the cross-track
error and moving towards the next destination way-point, the
heading θ as specified by the FMS is modeled by a convex
combination of the reference heading Ψi and the correction
heading Ψc:

θ = u(x, i) = γ(x, i)Ψc(x, i) + (1− γ(x, i))Ψi (2)

with the coefficient of the convex combination taken to be
a growing function of the absolute value of the cross-track
error:

γ(x, i) = min
(

1,
|d(x, i)|

dm

)
. (3)

Here, dm > 0 is a threshold value for the cross-track error:
the more closely it approaches dm, the more the aircraft
will follow the correction heading Ψc(x, i) rather than its
reference heading Ψi. Note that the resulting function u(·, i)
is continuous because γ(·, i) and d(·, i) are continuous.

Let q(t) ∈ Q be the index of the reference line segment
at time t ∈ T . Then the dynamics of the aircraft during T
can be obtained by plugging (2) into (1):

dx(t) = v

[
cos(u(x(t),q(t)))
sin(u(x(t),q(t)))

]
dt + f(x(t))dt + σdw(t).

(4)

The switching law from line segment Ii to the next one
Ii+1 is determined according to the commonly used “fly-
by” method of performing turns, where the aircraft turns
from Ii to Ii+1 without passing over the way-point Oi+1

but by “cutting the corner.” In the higher-order aircraft model
proposed in [4], the turn starts when the aircraft enters the
half-plane {(x1, x2) ∈ R2 : α1ix1 + α2ix2 ≥ βi}, whose
boundary line α1ix1 + α2ix2 = βi is chosen so that an
aircraft tracking the reference line segment Ii can fly with
constant air speed v along an arc of circle joining Ii with
Ii+1 (see Figure 1). If we denote by d∗i the distance from the
way-point Oi+1 at which an aircraft flying exactly on line



segment Ii should start turning, then,

α1i =
x1i+1 − x1i√

(x1i+1 − x1i)2 + (x2i+1 − x2i)2
,

α2i =
x2i+1 − x2i√

(x1i+1 − x1i)2 + (x2i+1 − x2i)2

βi =
x1i+1(x1i+1 − x1i) + x2i+1(x2i+1 − x2i)√

(x1i+1 − x1i)2 + (x2i+1 − x2i)2
− d∗i .

The following expression for d∗i ,

d∗i =
v2

g tan(φ̄)
tan

( |Ψi+1 −Ψi|
2

)
,

is derived in [4] from d∗i = ri tan(ρi), where ρi = |Ψi+1−Ψi|
2

and ri is computed as the speed v divided by the (constant)
angular velocity g

v tan(φ̄), which is obtained from a higher
order aircraft model by assuming that the bank angle is kept
constant and equal to φ̄.

Ideally, crossing the switching boundary α1ix1 +α2ix2 =
βi while tracking Ii should cause a jump in the state
component q of equation (4) from i to i + 1. In practice,
however, the switching time instant can be uncertain. For this
reason, we assume that q is a Markov chain with switching
rates λij : R2 → R, i, j ∈ Q, i 6= j, that depend on the
aircraft position x. More specifically,
{

λij(x1, x2) = λ̄ g(α1ix1 + α2ix2 − βi), j = i + 1, i < M

λij(x1, x2) = 0, otherwise,
(5)

where λ̄ is some positive real constant and g : R→ [0, 1] is
a continuous function increasing monotonically from 0 to 1.
Thus, the switching rate from Ii to Ii+1 grows from 0 to λ̄
while crossing the switching boundary.

As detailed next, the described stochastic hybrid system
modeling the aircraft motion generates a switching diffusion
process (x(t),q(t)), t ∈ T , for any initial condition (x0, q0).

A. Switching diffusions

A switching diffusion is a stochastic hybrid system with
state s characterized by a continuous component x and a
discrete component q that take values, respectively, in the
Euclidean space Rn and in the finite set Q = {1, 2, . . .M}.
Thus, the hybrid state space is given by S := Rn ×Q.

The evolution of the discrete state component q is piece-
wise constant and right continuous, i.e., for each trajectory
of q there exists a sequence of consecutive left closed, right
open time intervals {Ti, i = 0, 1, . . . }, such that q(t) = qi,
∀t ∈ Ti, with qi ∈ Q, and qi 6= qi±1.

During each time interval Ti when q(t) is constant and
equal to qi ∈ Q, the continuous state component x evolves
according to the stochastic differential equation (SDE)

dx(t) = a(x(t), qi)dt + b(x(t), qi) Σ dw(t), (6)

initialized with x(t−i ) = limh→0+ x(ti − h) at time ti :=
inf{t : t ∈ Ti}. Functions a(·, qi) : Rn → Rn and b(·, qi) :
Rn → Rn×n are the drift and diffusion terms, and matrix
Σ ∈ Rn×n is diagonal with positive entries modulating the

variance of the standard n-dimensional Brownian motion
w(t). During the time interval Ti between consecutive jumps
in q, then x(t) behaves as a diffusion process with local
properties determined by a(·, qi) and b(·, qi).

A jump in the discrete state may occur during the con-
tinuous state evolution with an intensity and according to
a probabilistic reset map that both depend on the current
value taken by s. Specifically, q is a continuous time process,
whose evolution at time t is conditionally independent on
the past given s(t−) = (x, q) ∈ S, and is governed by the
transition probabilities

P{q(t + ∆) = q′|s(t−) = (x, q)} = λqq′(x)∆ + o(∆),

for q′ 6= q ∈ Q, where the transition rate λqq′ : Rn → R
satisfies the following assumption.

Assumption 1: λqq′(·) is a non-negative function, which is
bounded and Lipschitz continuous for each q, q′ ∈ Q, q 6= q′.
¤

The transition rate functions determine switching intensity
and reset map of the discrete state q. More precisely, during
the infinitesimal time interval [t, t+∆], q(t) will jump once
with probability λ(s)∆+ o(∆), and two or more times with
probability o(∆), starting from s(t−) = s, where λ : S →
[0, +∞) is the jump intensity function given by

λ(s) =
∑

q′∈Q,q′ 6=q

λqq′(x), s = (x, q) ∈ S. (7)

If s ∈ S is such that λ(s) = 0, then no instantaneous jump
can occur from s. Let s ∈ S be such that λ(s) 6= 0. Then,
the distribution of q(t) over Q, after a jump indeed occurs
at time t from s(t−) = (x, q), is given by the reset function
R : S ×Q → [0, 1]:

R((x, q), q′) =

{
λqq′ (x)

λ(s) , q′ 6= q

0, q′ = q.
(8)

Assumption 2: a(·, q), b(·, q) are bounded and Lipschitz
continuous for each q ∈ Q. ¤

Under Assumptions 1 and 2, the stochastic hybrid system
described above initialized with s0 = (x0, q0) ∈ S admits a
unique strong solution s(t) = (x(t),q(t)), t ≥ 0, represent-
ing a switching diffusion process. Moreover, s is a Markov
process and the trajectories of the continuous component x
are continuous. The boundedness condition on the diffusion
and drift terms in Assumption 2 could be relaxed, [11]. In our
case, however, this is not an issue since the system evolution
will be confined to some bounded region for numerical
purposes.

III. AIRCRAFT CONFLICT PREDICTION BY
REACHABILITY COMPUTATIONS

Our objective is to evaluate the possibility that the aircraft
will enter some forbidden area of the airspace D ⊂ R2,
characterized, for example, by Special Use Airspace (SUA)
areas, bad weather or congested zones that could make the
flight uncomfortable or even unsafe, during the look-ahead
time horizon T = [0, tf ].



With the aircraft dynamics modeled by a switching dif-
fusion process with state s = (x,q), the aircraft conflict
prediction problem can be reformulated as the following
stochastic reachability problem: Given the unsafe set D ⊂
Rn, determine the probability that the continuous component
x(t) solving (6) reaches D during the look-ahead time hori-
zon T = [0, tf ] when the switching diffusion is initialized
with s0 = (x0, q0) ∈ S :

Ps0

{
x(t) ∈ D for some t ∈ T

}
, (9)

where Ps0 is the probability measure induced by the switch-
ing diffusion s with initial condition s0. If D is measurable
and closed, the problem is well-posed since the reachability
event “x(t) ∈ D for some t ∈ T ” is measurable given that
the process x has continuous trajectories, [7].

To evaluate the probability (9) numerically, we introduce
a bounded open set U ⊂ Rn containing D that is chosen
large enough so that the situation can be declared safe once
x wonders outside U . Let U c denote the complement of U
in Rn. Then, with reference to the domain U , the probability
of entering D can be approximated by

Ps0 := Ps0

{
x hits D before hitting U c within T

}
. (10)

Hence, for the purpose of computing (10), we can assume
that x in (6) is defined on the open domain U \D with initial
condition x0 ∈ U \ D, and that x is stopped as soon as it
hits the boundary ∂ U c ∪ ∂D of U \D.

We now describe a method to estimate Ps0 by weakly
approximating the switching diffusion process s using the
piecewise constant interpolation of a suitably defined discrete
time Markov chain.

A. Markov chain approximation

The discrete time Markov chain {vk, k ≥ 0} is char-
acterized by a two-component state: v = (z,m), where
z takes on values in a finite set Zδ obtained by gridding
U \D, whereas m takes on values in the finite set Q. Note
that the two components of the Markov chain state v =
(z,m) are introduced to approximate the two components
of the switching diffusion s = (x,q), respectively. The
interpolation time interval ∆δ is a positive function of the
gridding scale parameter δ and tends to zero faster than δ:
∆δ = o(δ).

We next explain how the Markov chain transition proba-
bilities should be chosen so as to guarantee that the Markov
chain interpolated process converges weakly to the switching
diffusion process as the grid scale parameter δ approaches
zero.

In order to take into account the properties of the pure
jump process q when defining the transition probabilities
of the approximating Markov chain {vk, k ≥ 0}, it is
convenient to introduce an enlarged Markov chain process
{(vk, jk), k ≥ 0}. The discrete time process {jk, k ≥
0} is an i.i.d. Bernoulli process that represents the jump
occurrences: if jk = 1, then a jump, possibly of zero entity,
occurs at time k; whereas if jk = 0, then no jump occurs
at time k. Under the assumption that jk is independent of

the past variables vi, i = 0, 1, . . . , k, ∀k ≥ 0, then, it is
easily shown that {vk, k ≥ 0} is a Markov chain. Also,
the transition probabilities of the Markov chain {vk, k ≥ 0}
under the grid scale δ are given by

Pδ

{
vk+1 = v′ | vk = v

}

=
∑

j∈{0,1}
Pδ

{
vk+1 = v′ | vk = v, jk = j

}
Pδ

{
jk = j

}
,

which are specified by the jump probability Pδ

{
jk = 1

}
,

the inter macro-states transition probability Pδ

{
vk+1 =

v′ | vk = v, jk = 1
}

, and the intra macro-states transition
probability Pδ

{
vk+1 = v′ | vk = v, jk = 0

}
.

Jump probability: We set, for each k = 0, 1, . . .,

Pδ

{
jk = 1

}
= 1− e−λmax∆δ = λmax∆δ + o(∆δ), (11)

where λmax := maxx∈Rn

∑
q,q′∈Q,q 6=q′ λqq′(x).

Inter macro-states transition probability: If jk = 1 (a jump
occurs at time k), then, zk+1 = zk since the continuous state
component x of the diffusion process s is reinitialized with
the same value prior to the jump occurrence; whereas the
value of mk+1 is determined based on that of vk through
the (conditional) transition probabilities pδ(q → q′|z) :=
Pδ

{
mk+1 = q′ | vk = (z, q), jk = 1

}
. In other words,

Pδ

{
(zk+1,mk+1) = (z′, q′) | vk = (z, q), jk = 1

}

=

{
0, z′ 6= z

pδ(q → q′|z), z′ = z.

We set

pδ(q → q′|z) =

{
λq q′ (z)

λmax
, q′ 6= q

1− 1
λmax

∑
q∗∈Q,q∗ 6=q λq q∗(z), q′ = q.

This way, the probability distribution of mk+1 when a
jump of non-zero entity occurs at time k from (z, q) is
Pδ

{
mk+1 = q′ | vk = (z, q), jk = 1,mk+1 6= mk

}
=

R((z, q), q′), where R(·, ·) is the reset function defined in
(8). Also, the probability that a jump of non-zero entity
occurs at time k from (z, q) is given by Pδ

{
jk = 1,mk+1 6=

q | vk = (z, q)
}

= λ((z, q))∆δ + o(∆δ), where λ(·) is the
jump intensity function defined in (7).

Intra macro-state transition probability: If jk = 0 (no
jump occurs at time k), then mk+1 = mk; whereas the value
of zk+1 is determined from that of vk through the (condi-
tional) transition probabilities pδ(z → z′|q) := Pδ

{
zk+1 =

z′ | vk = (z, q), jk = 0
}

describing the evolution of z within
the “macro-state” q ∈ Q. In other words,

Pδ

{
(zk+1,mk+1) = (z′, q′) | vk = (z, q), jk = 0

}

=

{
0, q′ 6= q

pδ(z → z′|q), q′ = q.

For the weak convergence result to hold, the probabil-
ities pδ(z → z′|q) should be suitably selected so as to
approximate locally the evolution of the x component of
the switching diffusion s = (x,q) with absorption on the
boundary ∂U c ∪ ∂D when no jump occurs in q.



To clarify this “local consistency” notion, we need first
to introduce some notations. Let Σ = diag(σ1, σ2, . . . , σn)
with σi > 0, i = 1, . . . , n. Fix δ > 0. Denote by Zn

δ

the integer grids of Rn scaled according to δ and the
positive diagonal entries of matrix Σ as follows Zn

δ =
{(m1η1δ,m2η2δ, . . . , mnηnδ)| mi ∈ Z, i = 1, . . . , n},
where ηi := σi

σmax
, i = 1, . . . , n, with σmax = maxi σi. For

each grid point z ∈ Zn
δ , define the immediate neighbors

set as a subset of Zn
δ whose distance from z along the

coordinate axis xi is at most ηiδ, i = 1, . . . , n, i.e., Nδ(z) =
{z + (i1η1δ, . . . , inηnδ) ∈ Zn

δ | (i1, . . . , in) ∈ I}, where
I ⊆ {0, 1,−1}n \ {(0, 0, . . . , 0)}. Nδ(z) represents the set
of states to which z can evolve in one time step within a
macro-state, starting from z.

The finite set Zδ where z takes on values is defined as the
set of all those grid points in Zn

δ that lie inside U but outside
D: Zδ = (U \D)∩Zn

δ . The interior Z◦δ of Zδ consists of all
those points in Zδ which have all their neighbors in Zδ . The
boundary ∂Zδ = Zδ\Z◦δ of Zδ is the union of the sets ∂ZδUc

and ∂ZδD, where ∂ZδUc is the set of points with at least
one neighbor inside U c and ∂ZδD is the set of points with at
least one neighbor inside D. The points that satisfy both these
conditions, if any, are assigned to either ∂ZδD or ∂ZδUc , so
as to make these two sets disjoint. This eventually introduces
an error in the estimate of the probability of interest, which
however becomes negligible if U is chosen sufficiently large.

For each q ∈ Q, we define pδ(z → z′|q) so that:
• each state z in ∂Zδ is an absorbing state;
• from any state z in Z◦δ , z moves to one of its neighbors in
Nδ(z) or remains at z according to probabilities determined
by its current location:

pδ(z → z′|q) =

{
πδ(z′|(z, q)), z′ ∈ Nδ(z) ∪ {z}
0, otherwise,

z ∈ Z◦δ ,

(12)
where the probability distributions πδ(·|(z, q)) : Nδ(z) ∪
{z} → [0, 1], z ∈ Z◦δ , are appropriate functions of the drift
and diffusion terms in (6) evaluated at (z, q).

Fix some time step k and consider the conditional mean
and variance of the finite difference zk+1 − zk given that
vk = (z, q) and jk = 0 (intra macro-state evolution):

mδ(z, q) = Eδ

[
zk+1 − zk | vk = (z, q), jk = 0

]

Vδ(z, q) = Eδ

[
(zk+1 − zk)(zk+1 − zk)T | vk = (z, q), jk = 0

]

For the local consistency property to hold, the immediate
neighbors set Nδ(z) and the family of distribution functions
{πδ(·|(z, q)) : Nδ(z) ∪ {z} → [0, 1], z ∈ Z◦δ } should be
chosen so that
1

∆δ
mδ(z, q) → a(x, q),

1
∆δ

Vδ(z, q) → b(x, q)Σ2b(x, q)T ,

as δ → 0, for all x ∈ U \D, where, for any δ, z is a point
in Z◦δ closest to x.

Different choices are possible that satisfy the local con-
sistency property (see [12]).

Discrete time Markov chain interpolation: Let {∆τ k, k ≥
0} be an i.i.d. sequence of random variables exponentially

distributed with mean value ∆δ , independent of {vk, k ≥ 0}
and {jk, k ≥ 0}. Denote by {v(t), t ≥ 0} the continuous
time stochastic process that is equal to vk on the time interval
[τ k, τ k+1) for all k, where τ 0 = 0 and τ k+1 = τ k +∆τ k,
k ≥ 0.

Theorem 1: Suppose that the approximating Markov
chain {vk, k ≥ 0} is initialized at a point v0 ∈ Z◦δ × Q
closest to s0 ∈ (U \D)×Q and satisfies the local consistency
properties. Then, under Assumptions 1 and 2, the process
{v(t), t ≥ 0} obtained by interpolation of {vk, k ≥ 0}
converges weakly as δ → 0 to the switching diffusion process
{s(t) = (x(t),q(t)), t ≥ 0} associated with the initial
condition s0, with x(t) defined on U \ D and absorption
on the boundary ∂U c ∪ ∂D. ¤

Estimation of the probability of reaching the unsafe set:
Consider the look-ahead time horizon T = [0, tf ]. Fix

δ > 0 so that kf := tf

∆δ
is an integer, and construct the

approximating Markov chain {vk = (zk,mk), k ≥ 0}
satisfying Theorem 1.

Then, the estimate

P̂s0 := Pδ

{
zk hits ∂ZδD before ∂ZδUc within [0, kf ]

}

converges with probability one to the probability of interest
Ps0 in (10). Since both the boundaries ∂ZδUc and ∂ZδD are
absorbing, then P̂s0 reduces to

P̂s0 = Pδ

{
zkf

∈ ∂ZδD

}
. (13)

B. Application to the aircraft conflict prediction

In order to complete the definition of the Markov chain
approximating the diffusion process modeling the aircraft
motion in Section II, we only need to specify the immediate
neighbors set Nδ(z), the family of distribution functions
{πδ(·|v) : Nδ(z) ∪ {z} → [0, 1], z ∈ Z◦δ }, and the
interpolation time interval ∆δ , so that the local consistency
property holds.

Note that the diffusion term b(x, q) in equation (4) gov-
erning the aircraft position x is given by b(x, q) = σI ,
where I is the identity matrix of size 2. Then, the immediate
neighbors set Nδ(z), z ∈ Zδ , can be confined to the set of
points along each one of the xi axis whose distance from q
is δ, i = 1, 2:

z1+ = z + (+δ, 0) z1− = z + (−δ, 0)
z2+ = z + (0,+δ) z2− = z + (0,−δ).

The transition probability function πδ(·|v) over Nδ(z)∪{z}
from v = (z, q) ∈ Z◦δ ×Q can be chosen as follows:

πδ(z′|v) =





c(v) ξ0(v), z′ = z

c(v) e+δξi(v), z′ = zi+ , i = 1, 2
c(v) e−δξi(v), z′ = zi− , i = 1, 2,

(14)

with ξ0(v) = 2
ρσ2 − 4, ξi(v) = [a(v)]i

σ2 , i = 1, 2, c(v) =
1

2
∑2

i=1 csh(δξi(v))+ξ0(v)
, where for any y ∈ Rn, [y]i denotes

the component of y along the xi direction, i = 1, 2. ρ is a
positive constant that has to be chosen small enough such



that ξ0(v) defined above is positive for all v ∈ Z◦δ × Q.
In particular, this is guaranteed if 0 < ρ ≤ 1

2σ2 . As for
the interpolation time interval ∆δ , it can be set equal to
∆δ = ρδ2.

With the above choices, a direct computation shows that,
for each v ∈ Z◦δ ×Q,

1
∆δ

mδ(v) =
2c(v)
ρδ

[
sh(δξ1(v))
sh(δξ2(v))

]
,

1
∆δ

Vδ(v) =
2c(v)

ρ
diag(csh (δξ1(v)), csh(δξ2(v))) .

It is then easily verified that the local consistency prop-
erty holds, which implies the weak convergence result in
Theorem 1. The estimate P̂s0 in (13) of the probability of
conflict can be computed by the iterative algorithm described
hereafter.

Define a set of probability maps p̂(k) : Zδ × Q → [0, 1],
k = 0, 1, . . . , kf , where

p̂(k)(v) := Pδ

{
zkf

∈ ∂ZδD | vkf−k = v
}

(15)

is the probability of zk hitting ∂ZδD before ∂ZδUc within
the discrete time interval [kf −k, kf ] starting from v at time
kf − k. Then, P̂s0 can be computed as P̂s0 = p̂(kf )(v0).
Moreover, it is easily seen that p̂(k)

δ : Zδ × Q → [0, 1],
0 ≤ k < kf , satisfies the recursion

p̂(k+1)(v) =
∑

v′∈Zδ×Q
pδ(v → v′)p̂(k)(v′), v ∈ Zδ ×Q.

Hence p̂(kf ) can be computed by iterating this equation kf

times starting from k = 0 with

p̂(0)(v) =

{
1, if v ∈ ∂ZδD ×Q
0, otherwise,

by the definition (15) of p̂(k).
Recalling that any v ∈ ∂Zδ ×Q is an absorbing state and

that, for each k = 0, . . . , kf , p̂(k)(v) = 1 if v ∈ ∂ZδD ×Q,
and p̂(k)(v) = 0 if v ∈ ∂ZδUc ×Q, we get

p̂(k+1)(v) =





∑

v′∈Zδ×Q
pδ(v → v′)p̂(k)(v′), v ∈ Z◦δ ×Q

1, v ∈ ∂ZδD ×Q
0, v ∈ ∂ZδUc ×Q.

Remark 1 (Computational Complexity): The proposed it-
erative algorithm to compute P̂s0 determines all the kf + 1
maps p̂(k), k = 0, 1, . . . , kf . Consider the general case
where the continuous state space has dimension n and there
is a total of M discrete modes. Then for a grid size δ,
since ∆δ = ρδ2, the computational complexity of the above
reachability computation as measured by the total number
of recursive iterations) is of the order O( M

δn+2 ), which
grows exponentially fast with the continuous state dimension.
This unfavorable feature, however, is also shared by other
reachability computation algorithms of general deterministic
and stochastic hybrid systems. For practical purpose, the
grid size δ should be chosen to balance the two conflicting

L2

O1 (60 ,-40)

O2 (40 ,-20)

O3 (40,0)

O4 (60,20)

L1

x1

x2

Fig. 2. Flight path. The forbidden zone D is the shaded disk.

considerations that large δ’s may not allow for the simulation
of fast moving processes and may lead to larger estimation
errors, but for small δ’s the running time may be too long.

Despite the computation intensity, our algorithm has the
advantage that, after its completion, an estimate of the prob-
ability of conflict over the residual time horizon [tf − t, tf ]
of length t is readily available for any t ∈ (0, tf ), and
is given by the map p̂(b(tf−t)/∆δc) evaluated at the state
value at time tf − t . This fact may enable one to design
a resolution maneuver to avoid the unsafe region during
[0, tf ] by adaptively adjusting the aircraft’s heading based
on the probability-to-go map p̂(b(tf−t)/∆δc) pre-computed
at the very beginning of the time interval. For instance,
the heading of the aircraft could be chosen as the negative
gradient direction of p̂(b(tf−t)/∆δc), i.e., the direction along
which the probability of conflict decreases the fastest. ¤

IV. NUMERICAL EXAMPLE

We next illustrate the approximation algorithm developed
in the previous section by applying it to a numerical example.

We suppose that the aircraft has assigned a flight plan as
shown in Figure 2: it tries to follow a sequence of way-points
O1, O2, O3, and O4, with coordinates (60,−40), (40,−20),
(40, 0), and (60, 20), respectively (all coordinates are in the
unit of km), flying at some constant air speed v. Thus, the
aircraft motion can be modeled as a stochastic hybrid system
with three modes:

1) mode q = 1 corresponds to the line segment I1 with
reference heading Ψ1 = 135◦;

2) mode q = 2 corresponds to the line segment I2 with
reference heading Ψ2 = 90◦;

3) mode q = 3 corresponds to the line segment I3 with
reference heading Ψ3 = 45◦.

In each mode, the dynamics of the aircraft position x(t) is
governed by the equation (4) with u(·, ·) given in (2). The
switching boundary from mode 1 to mode 2 is line L1 in
Figure 2 and that from mode 2 to mode 3 is line L2, while
there is no switching out of mode 3.

The forbidden zone D, marked by the shaded area in
Figure 2, is a disk of radius 5 km centered at the point
(60, 15). Note that we have chosen a case where the nominal



Param. Definition Value
v Aircraft nominal speed Mach 0.8
φ̄ Bank angle 0.2◦
g Gravitational acceleration 9.81 m s−2

dm Threshold for cross-track error in (3) 200 km
σ Variance of noise in (4) 0.3 km1/2s−1

f(·) Wind velocity field 0
λ̄ Maximum mode switching rate 0.03 s−1

δ Discretization step size 1 km
tf Look-ahead time horizon length 200 s
ρ Parameter in (14) 0.5 km−1s2

TABLE I
PARAMETERS AND THEIR VALUES.

flight path crosses the forbidden zone. This will allow a more
prominent visualization of the influence on the probability of
conflict of the FMS correction action.

Our goal is to use the reachability computation algorithm
described in the previous section to estimate the probability
Ps0 that an aircraft with flight plan {Oi, i = 1, 2, 3, 4}, air
speed v, and located at an arbitrary initial position x0 will
ever wonder into D within some look-ahead time horizon
T = [0, tf ], given that its mode at time 0 is q0 = 1 (i.e., the
hybrid system is initialized at s0 = (x0, 1)).

In all the experiments, we choose the gridding scale
parameter δ = 1 km and the region U as the rectangle
U = (−10, 110) × (−90, 30). In addition, we assume that
the function g(·) in equation (5) is given by g(γ) = 1/(1 +
0.1e−500γ).

To study the influence of the cross-track error correction
term (3) on Ps0 , we perform two experiments with the
same set of parameters in Table I except that in the second
experiment we set γ(x, i) = 1 in (3) so that the heading
u(x, i) is always along the reference heading Ψi in equation
(4). In other words, in the second experiment there is no
cross-track error correction effort from the FMS in the
aircraft dynamics.

The estimated probability of conflict P̂s0 is plotted in
Figure 3 (first experiment) and Figure 4 (second experiment)
as a function of the initial position x0 within U . An obvious
difference of the result in Figure 4 with that in Figure 3 is
that the region with higher probability of conflict has shrunk
considerably. This is because, regardless of the aircraft initial
location, the cross-track error correction term tends to cause
the aircraft to converge along the nominal flight path, which
in itself will pass through the forbidden zone. Without the
cross-track error correction, the aircraft will deviate from the
nominal flight path with increased probability, thus reducing
the likelihood of a conflict.

Furthermore, from the plots of Figure 3 in particular, it
can be seen that the region with high probability of conflict
consists of three adjacent subregions roughly traced out by
a virtual aircraft that starts inside the forbidden zone D and
follows first the reverse heading Ψ1−180◦ = −45◦ of mode
1 (subregion I), then the reverse heading Ψ2−180◦ = −90◦

of mode 2 (subregion II), and finally the reverse heading
Ψ3 − 180◦ = −135◦ of mode 3 (subregion III). This
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Fig. 3. Estimated Ps0 for the set of parameter values in Table I. Left: 3-D
view. Right: 2-D contour plot.

observation can be intuitively explained as that, ignoring the
presence of noises, an aircraft starting inside those subregions
will be led to or near the forbidden zone D sometime within
tf = 200 seconds under the flight plan {Oi, i = 1, 2, 3, 4}.
Take for instance region I. Given that the initial mode is
q0 = 1 and switchings between modes occur randomly, then,
there is a non-zero probability that the aircraft will follow
mode 1 throughout the whole process with no switching,
especially during the first part of the time horizon. This
explains why the high probability region is obtained by
reversing D along the angle of mode 1, thus originating
subregion I whose level curves protrude to the right before
bending down to form region II. It is also observed that
there is some extrusion between adjacent subregions. For
example, subregion I extrudes somewhat beyond its juncture
with subregion II, and to a less degree, subregion II extrudes
beyond its juncture with subregion III. This is due to the
fact that, in our model, the transition between modes does
not occur instantly at the switching boundary, but rather
randomly at gradually changing rates as described by the
rate transition functions in (5).

V. CONCLUSIONS

We studied the problem of aircraft conflict prediction as
a reachability analysis problem for a switching diffusion. A
stochastic approximation scheme to estimate the probability
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Fig. 4. Estimated Ps0 with no cross-track error correction. Left: 3-D view.
Right: 2-D contour plot.

that a single aircraft will enter a forbidden area of the
airspace within a finite time horizon was presented. The
application of the approach to more complex aircraft conflict
prediction problems is straightforward; although increased
problem dimensionality causes an exponential growth in
the computational effort, which may make the problem
intractable in practice.

The described approach to stochastic reachability can be
easily extended to the case when the initial state of the
stochastic hybrid system is uncertain or when the unsafe set
is time-varying, which can be of interest for solving practical
stability analysis problems, [10]. The extension to more
general classes of stochastic hybrid systems than switching
diffusions, such as those proposed in [7], [13], is instead
more challenging, the main difficulty being in how to deal
with forced transitions and boundary crossing of arbitrary
guard sets and the associated weakly convergence issues.
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